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The idea of using macromolecules as source of data
for phylogenetic reconstruction was developed
during the 1960’s

Organic macromolecules are optimal for this
purpose because:
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The concept of molecular clock
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The concept of molecular clock

The basic idea of the molecular clock is central to
modern phylogenetic inference, but remember:

- The rate of change of a sequence may be very
variable depending on the kind of molecule, the
particular region or the phylogenetic lineage

Expected Transitions

Expected Transversions
Ohserved

// Transversions

- Other phenomena such as long branch
attraction (due to saturation of very variable
sites) have to be taken into account

- The alignment should be based in homology
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Homology, orthology and paralogy
A B C

Time

- speciation event




Homology, orthology and paralogy
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C All the resulting sequences

of the gen x are
homologous because they
derived from a common
ancestor
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Homology, orthology and paralogy
A B C

The homology caused by speciation
events is called orthology
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Ancestral gene x
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Ancestral gene x
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The homology caused by speciation
events is called orthology

Gene duplication



Homology, orthology and paralogy

C

The homology caused by a
sequence duplication is called

paralogy
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Homology, orthology and paralogy

W

C If our objective is

phylogenetic reconstruction
we should only align
orthologous sequences,
otherwise our result would
be misleading
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Homology, orthology and paralogy

C If our objective is
phylogenetic reconstruction
we should only align

orthologous sequences,
otherwise our result would
be misleading
Gene xf3
Gene xa

Gene duplication

Time

Ancestral gene x



Homology, orthology and paralogy

Both orthology and paralogy were present in the study
of Zuckerkandl and Pauling
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Homology, orthology and paralogy
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Gene (and genome)
duplications have been key
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The €-globin and B-globln genes arose
via duplication of a proto B-globin gene
in the ancestor of therian mammals.

<> Speciation Event

® Gene Duplication

Opazo et al. 2008. Proc Natl Acad Sci USA 105

The t‘,P- and Bp-globin genes arose via
duplication of a proto [3-globin gene in
the monotreme lineage.

events for evolutionary



Non tree-like evolution

Example: Introgression of brown bear genes in the polar bears of the ABC islands
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Primary and secondary structure

The function of macromolecules is Compensatory changes
explained in terms of their structure
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Primary and secondary structure

The function of macromolecules is Compensatory changes
explained in terms of their structure
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Primary and secondary structure

The function of macromolecules is Compensatory changes
explained in terms of their structure
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Primary and secondary structure

The function of macromolecules is
explained in terms of their structure
(particularly for proteins and RNA)
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Primary and secondary structure

RNAfold (RNA structure prediction) http://http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi

RNAfold \NebServer 4 Enter input

Parameters

[Home|New job|Help]

The RNAfold web server will predict secondary structures of single stranded RNA or DNA sequences. Current limits are 7,500 nt for partition functien calculations and 10,000 nt for
minimum free energy only predicitions.

Simply paste or upload your sequence below and click Proceed. To get more information on the meaning of the options click the &) symbols. ¥You can test the server using this sample
sequence.

Paste or type your sequence here: [clear]

& Show constraint folding

or uplead a file in FASTA format: | Choose File | No file chosen

Fold algorithms and basic options
[ minimum free energy (MFE) and partition function &)
(] minimum free energy (MFE) only &)
& no GU pairs at the end of helices @)
=] avoid isolated base pairs @)

& Show advanced options
OQutput options
(o] interactive RNA secondary structure plot &

] RMNA secondary structure plots with reliability annotation (Partition function folding only) )
[l Mountain plot &)

Motification via e-mail upen completion of the jeb {opticnal): |your e-mail
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Ribosome
— A molecular machine, serves for biological protein synthesis (translation).

Two subunit:

Large: binds tRNA and joins amino
acids to form the protein

Small: binds and reads the mRNA

By Bensaccount



Structure of the 70S E.coli ribosome
With large 50S ribosomal subunit (red); small 30S ribosomal subunit (blue)

508S:

23S rRNA

5S rRNA

ribosomal proteins (pink)

ribosomal proteins

| 308S:
Y  16S rRNA (dark blue)
ribosomal proteins
(light blue)
/
rRNA

By Vossman



Ribosomal DNA

—— a DNA sequence that codes for ribosomal RNA
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By Norbert Holsteir!TS

Gene cluster of 18S, 5.8S, and 28S

NTS, non-transcribed spacer
ETS, external transcribed spacer

ITS, internal transcribed spacers 1 and 2

ETS
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Human genome:

5 chromosomes with the repeat unit
chromosomes 13, 14, 15, 21 and 22



Human genome: ribosomal RNA gene clusters

» Five clusters of 45S ribosomal RNA genes:

» One cluster of 5S RNA genes: chromosome 1
chromosomes 13, 14, 15, 21 and 22
1

» 5S: 100 copies g
1

» 45S: 300 copies
Caburet et al. 2005; Stults et al. 2008

Laurence A. Moran



Citrullus lanatus chromosomes

FISH (Fluorescence in situ hybridization)
using rDNA (green, 45S; pink, 5S) probes Guo et al. 2012



Concerted evolution

» Concerted evolution: a process in which related genes within a species undergo
genetic exchange, causing their sequence evolution to be concerted over some
period of time

» Concerted evolution can explain the similarity among multicopy rDNA genes

» INCOMPLETE concerted evolution results in polymorphisms among copies of
rDNA sequences



Consequence of incomplete concerted evolution
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How to resolve it? —cloning the PCR product

TA Cloning

Vishnu2011

By Stefan Walkowski

An LB agar plate showing the result of a blue white screen



ITS sequences are widely used for phylogenetic studies
and DNA barcoding, because:

» As 18S and 26S genes are so conserved, it is easy to design universal primers
» ITS has multiple copies, and is easy to be amplified

» The locus evolves fast, so that it is variable and provides much phylogenetic
information, potentially useful in resolving closely related orgnisms



Nuclear ribosomal RNA repeat unit in mosses
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Proceedings of the National Academy of Sciences
Vol. 65, No. 3, pp. 609616, March 1970

Evolution of the Transcription Unit of Ribosomal RNA*

Robert P. Perry, Tsai-Ying Cheng, Jerome J. Freed,
Jay R. Greenberg, Dawn E. Kelley, and Kenneth D. Tartof

THE INSTITUTE FOR CANCER RESEARCH, PHILADELPHIA, PENNSYLVANIA

Communicated by Thomas F. Anderson, October 15, 1969
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Abstract The phylogenetic relationships of the genus Sorghum and related genera were
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Nuclear ribosomal internal transcribed spacer (ITS)
region as a universal DNA barcode marker for Fungi
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